E n. (, ) Η χρονοεξαρτώµενη εξίσωση Schrödinger, έχει την µορφή ˆ
|
|
- Ζεφύρα Βιτάλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςα(ΓΕΚα Σε ένα μονοδιάστατο κβαντικό σύστημα να δειχθεί ότι η γενική λύση της χρονοεξαρτώμενης εξίσωσης Schrödiger είναι της μορφής Ψ ( x,t c ( x e i E t, όπου τα E και ιδιοτιμές και ιδιοσυναρτήσεις της ενέργειας, αντίστοιχα σημασία των συντελεστών αυτών (x αποτελούν τις διακριτές Ποιά η φυσική (, Η χρονοεξαρτώµενη εξίσωση Schrödiger, έχει την µορφή ˆ Ψ x t Η( x, pˆ Ψ ( x, t i, t όπου Η ˆ ( x, pˆ είναι ο τελεστής της Χαµιλτονιανής Η λύση της εξίσωσης αυτής µε µερικές παραγώγους µπορεί να βρεθεί χρησιµοποιώντας την µέθοδο Χωριζόµενων µεταβλητών ηλαδή αναζητάµε λύσεις της µορφής Ψ ( x, t ( x T( t Με τον χωρισµό αυτό των ανεξάρτητων µεταβλητών η χρονοεξαρτώµενη εξίσωση Schrödiger παίρνει την ισοδύναµη µορφή dt ˆ i H ( x dt ( x Tt ( Καθώς το αριστερό µέρος της ισότητας είναι συνάρτηση µόνο της θέσης ενώ το δεξί αποκλειστικά του χρόνου, για να είναι ίσα θα πρέπει να είναι ίσα µε µια σταθερά Άρα dt Hˆ ih dt E, που ισοδυναµεί µε δύο διαφορικές εξισώσεις T E dt i dt ET, µε προφανή λύση ( ( i t Tt T e και την διαφορική εξίσωση Hˆ ( x E( x Η εξίσωση αυτή αποτελεί την χρονοεξαρτώµενη εξίσωση Schrödiger, και είναι ουσιαστικά το πρόβληµα ιδιοτιµών της ενέργειας Η λύση του προβλήµατος αυτού άλλοτε έχει συνεχές φάσµα (πχ ελεύθερο σωµάτιο, Hˆ ( x E ( x, δείκτης p ουσιαστικά της ορµής, ο p p οποίος παίρνει συνεχείς τιµές ή άλλες φορές διακριτό (H ˆ ( x E ( x, ο δείκτης είναι ακέραιος Έτσι βρίσκουµε ότι η λύση της χρονοεξαρτώµενη εξίσωση Schrödiger είναι της µορφής iet / ( xe Καθώς όµως η χρονοεξαρτώµενη εξίσωση Schrödiger είναι γραµµική (δεν Ψ( x, t Ψ( x, t περιέχει µη γραµµικούς όρους, πχ όρους ( Ψ( xt,, Ψ( xt,, t t και οποιαδήποτε γραµµικός συνδυασµός των λύσεων αυτών θα αποτελεί λύση της εξίσωσης Έχουµε δηλαδή η γενική λύση να είναι της µορφής Ψ ( x,t c ( x e Ποια είναι η φυσική σηµασία των συντελεστών αυτών Ας προσπαθήσουµε να βρούµε την µέση ενέργεια του συστήµατος i E t
2 E Em i t i t ( ˆ ( ( ˆ mm( m E x,t H x,t dx c x e H c x e dx E E m ( EE m i t i t i t ( ( ˆ c x e cme Hm( x dx ccme ( x ( Hˆ m( x dx m m ( ˆ ( ( EEm ( E Em i t i t ccme ( x Hm( x dx ccme ( x Emm( x dx m m ( EEm ( EEm i t i t ccme Em ( x m( x dx ccme Emδm cce c E m m Όµως γνωρίζουµε ότι η µέση ενέργεια δίνεται από την σχέση βρίσκουµε c ιδιοκατάσταση του συστήµατος E PE, άρα P, δηλαδή οι συντελεστές σχετίζονται µε την πιθανότητα να έχω την - Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςβ(ΓΕΚβ Για ένα μονοδιάστατο κβαντικό σύστημα να βρεθεί η έκφραση που δίνει την μέση τιμή οποιοδήποτε φυσικού μεγέθους που περιγράφεται από ένα τελεστή Α, αν είναι γνωστά τα E και (x που αποτελούν τις διακριτές ιδιοτιμές και ιδιοσυναρτήσεις της ενέργειας, αντίστοιχα Από τον ορισµό της µέσης τιµής έχω Ψ ( x,t Ψ ( x,t dx ˆ Γνωρίζουµε δε από την ακριβώς προηγούµενη άσκηση, ότι Ψ ( x,t c ( x e Έτσι έχουµε E Em i t i t ( ˆ Ψ Ψ ( ( ˆ mm( m x,t x,t dx c x e c x e dx E Em ( EEm i t i t i t ( ( ˆ c x e cme m( x dx ccme ( x ( ˆ m( x dx m m ( EEm ( EEm i t i t cce m ( ˆ x m( x dx ccme m m m όπου ( ( ˆ ( x ( x dx m m i E t
3 Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςγ(ΓΕΚγ Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από δύο καταστάσεις με ενέργεια Ε και Ε και αντίστοιχες ιδιοσυναρτήσεις,, να βρεθεί η έκφραση που δίνει την μέση τιμή της θέσης, της ορμής και της ενέργειας Την γενική έκφραση που βρήκαµε στην προηγούµενη άσκηση την χρησιµοποιούµε για όλες τις ζητούµενες φυσικές ιδιότητες Αρχικά για την θέση του σωµατιδίου, δηλαδή Â x Έτσι η µέση τιµή της θέσης δίνεται από την έκφραση iωt iω t iωt iωt x cce x + cce x + cce x + cce x, όπου ω ( E E / και i j i i, i j x dx x Ένώ τα c, c είναι γενικά µιγαδικοί αριθµοί, δηλαδή c c e c c e Έτσι έχουµε τελικά, καθώς ω ω και ( ( i i x dx x dx x dx x x x x e, x x e, ενώ, (αµφότεροι x dx x dx x x dx x dx x πραγµατικοί, ότι i i i i iωt i i iωt i i x ( t c e c e x + c e c e e x + c e c e e x + c e c e x i( iωt i( iωt c x + c c e e x + c c e e x + c x i iωt i i iωt i c x + c c e e x e + c c e e x e i( ωt+ + i( ωt+ + c x + c x + c c x ( e + e c x + c x + c c x cos( ωt+ + που είναι χρόνο-εξαρτώµενη πραγµατική συνάρτηση Στην παραπάνω σχέση για την µέση θέση, παρατηρούµε ότι αν οι ιδιοσυναρτήσεις της ενέργειας είναι πραγµατικές, όπως για παράδειγµα στο απειρόβαθο και πεπερασµένο πηγάδι δυναµικού και στον αρµονικό ταλαντωτή, η φάση µηδενίζεται και προφανώς x x x Αυτό γιατί, x dx x dx x + c που είναι πραγµατικός αριθµός ηλαδή η µέση τιµή της θέσης γίνεται x ( t c x + c x + c c x cos( ω t+ Την γενική έκφραση που βρήκαµε στην προηγούµενη άσκηση την χρησιµοποιούµε για την ορµή του σωµατιδίου ( ˆ ˆp Έτσι η µέση τιµή της ορµής δίνεται από την σχέση iωt iωt iωt iωt p ( t cce p + cce p + cce p + cce p, όπου ( ˆ i j p p dx και i p p p p e, p p e, δηλαδή i x
4 p ( t c e c e p + c e c e e p + c e c e e p + c e c e p i i i i iωt i i iωt i i i( iωt i( iωt c p + c c e e p + c c e e p + c p i iωt i i iωt i c p + c c e e p e + c c e e p e i( ωt+ + i( ωt+ + c p + c p + c c p ( e + e + c c p + c p + c c p cos( ωt+ + που είναι χρόνο-εξαρτώµενη πραγµατική συνάρτηση Στην περίπτωση που οι ιδιοσυναρτήσεις είναι πραγµατικές, έχουµε ότι p i d i d 5i d 5i, p i d i d 5i d 5i, και ± π /, γιατί iπ / p ( pˆ dx i dx i d d x e p ( t c c p cos( ω t+ +, που ισοδύναµα µπορεί να γραφεί ηλαδή p ( t ± c c p si( ω t+, όπου προφανώς το πρόσηµο στην έκφραση της µέσης ορµής, εξαρτάται από το πρόσηµο του ολοκληρώµατος d Τέλος η µέση ενέργεια δίνεται από την µέση τιµή του τελεστή της Χαµιλτονιανής, iωt iωt iωt iωt E cce H + cce H + cce H + cce H, όπου ω ( E E / και i j i j j j i j j p i j H dx Hˆ dx E E dx E ηλαδή η µέση ενέργεια δ δίνεται από την έκφραση E c E+ c E Παρατηρούµε ότι η µέση τιµή της θέσης και της ορµής εξαρτώνται από τα µέτρα των συντελεστών c, c( c, c και από την διαφορά φάσης τους Συµπερασµατικά µπορούµε να πούµε ότι έχουµε τις παρακάτω σχέσεις Μέση θέση, Μέση ορµή, Μέση ενέργεια, Νορµαλισµός, x ( t c x + c x + c c x cos( ω t+ + p ( t c p + c p + c c p cos( ω t+ + E ( t PE + PE c E + c E + c c Γενικά έχουµε τέσσερις αγνώστους c, c,,, άρα χρειαζόµαστε τέσσερις σχέσεις µε αυτούς τους αγνώστους Είναι όµως έτσι τα πράγµατα; Παρατηρούµε ότι η µέση τιµή της θέσης και της ορµής εξαρτώνται από τα µέτρα των συντελεστών c, c( c, c και από την διαφορά φάσης τους Αν η κυµατοσυνάρτηση διαφέρει κατά µια φάση, είναι διαφορετική; i Έστω από την (x δηµιουργώ την (x e φ (x, όπου φ ένας αριθµός Παρατηρούµε ότι η πιθανότητα που είναι η ποσότητα µε την φυσική σηµασία δεν αλλάζει, καθώς p(xdx (x (xdx και
5 φ ( i iφ p(xdx (x (xdx e (x e (xdx i φ iφ iφ i φ e (xe (xdx e e (x (xdx (x (xdx p(xdx Έτσι ουσιαστικά χρειαζόµαστε µία φάση, δηλαδή µπορούµε να θέσουµε και Η κυµατοσυνάρτηση γίνεται E E i t i t i ( xt, c ( xe + c e ( xe Έχουµε τρεις αγνώστους c, c,, άρα χρειαζόµαστε τρεις σχέσεις µε αυτούς τους αγνώστους Πάντα, µία σχέση αποτελεί η συνθήκη κανονικοποίησης, δηλαδή ότι P + P c + c (δυστυχώς µια σχέση µε δύο λύσεις, πάντα όµως διαλέγουµε τις θετικές λύσεις Για να βρούµε τους τρεις αυτούς αγνώστους χρειαζόµαστε, δύο µέσες τιµές (πχ θέση και ορµή, θέση και ενέργεια και ορµή και ενέργεια Για οποιοδήποτε τελεστή Α, η µέση του τιµή θα δίνεται από την έκφραση ( t c + c + c c cos( ω t+ +, i όπου η φάση ορίζεται από την σχέση e, ενώ πάντα ισχύει ότι τα µη διαγώνια στοιχεία έχουν την ιδιότητα i e, e, Καθώς η τελευταία i σχέση ισχύει και για τα διαγώνια στοιχεία, δηλαδή διαγώνια στοιχεία είναι πραγµατικά Η σχέση, καταλαβαίνουµε ότι τα m m, αποδεικνύεται εύκολα καθώς τα m ( ˆm ( (x (xdx είναι ίσα µε m ˆ (x m(xdx, λόγω ερµιτιανότητας Ενώ το ίδιο αποτέλεσµα έχουµε από το συζυγές του, m καθώς ισχύει ότι ( ( ˆ ( ˆ m m m m (x (xdx (x (xdx Σηµείωση Αποδείξτε ότι η αβεβαιότητα στην ενέργεια δίνεται από τον τύπο, / / E E E PP ( E E c c EE ηλαδή σε ένα σύστηµα δύο επιπέδων αν γνωρίζουµε την µέση ενέργεια µπορούµε να εκτιµίσουµε την αβεβαιότητα της ενέργειας και αντίστροφα
6 Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςδ(ΓΕΚδ Ηλεκτρόνιο βρίσκεται στις δύο πρώτες ενεργειακές του καταστάσεις σε δυναμικό απειρόβαθου πηγαδιού εύρους (α Προσδιορίστε πλήρως αυτή την κατάσταση αν δίνεται ότι έχει μέση θέση / και η μέση ορμή του είναι 8 /3 ( β Να υπολογιστεί η μέση ενέργεια του συστήματος Υπόδειξη: Χρήσιµες τριγωνοµετρικές σχέσεις si si B cos( B cos( + B si cos B si( + B + si( B cos cos B cos( + B + cos( B Χρήσιµες τριγωνοµετρικές σχέσεις, ειδικές περιπτώσεις των προηγούµενων ( si cos( si cos si( ( cos + cos( Αφού έχουµε πραγµατικές ιδιοσυναρτήσεις, έχουµε από την προηγούµενη άσκηση x ( t c x + c x + c c x cos( ω t+, p ( t c c p cos( ω t+ + Οι πληροφορίες που µας δίνει η άσκηση αναφέρονται σε µια χρονική στιγµή Για ευκολία και προφανώς (γιατί; χωρίς βλάβη της γενικότητας, θεωρούµε t Έτσι οι παραπάνω εκφράσεις παίρνουν τις τιµές x ( t c x + c x + c c x cos(, p ( t c c p cos( + Χρειάζεται να υπολογίσουµε τα x dx x, x dx x,, x dx x p d πx πx Αφού si Θ( x Θ( x, si Θ( x Θ( x, έχουµε πx πx x dx x xsi dx x cos dx π x xdx x cos dx
7 καθώς πx πx πx πx x cos dx xd si xsi si dx π π π π x cos π ανάλογα βρίσκουµε ότι x, και πx πx πx 3πx x xdx x xsi si dx x cos cos dx καθώς πx πx πx πx x cos dx xd si xsi si dx π π π π x,,3,5, cos π π,, 4,6, Έτσι από το δεδοµένο ότι x ( t / c x + c x + c c x cos( c / + c / + c c x cos( 6 9π /( c + c + c c x cos( /+ c c x cos( c c x cos( cos( ± π / Ακόµα έχουµε i πx πx p ˆ p dx i dx i d si dsi x 4πi πx πx πi 3πx πx si cos dx si dx si dx + π i 8i 8 e 3π π 3 3 π / καθώς πx πx πx,,3,5, si dx d cos cos + π π π,, 4,6, 8 π / ηλαδή, βρήκαµε ότι, p e p p, π / και αφού έχουµε ότι 3 8 p ( t c c p cos( + c c cos( + π /, και µέση ορµή ίση µε 8 /3, έχουµε c c si( ± π / π / και 3 3 c c /
8 P P P και P c c c /, Άρα ( i iπ / ηλαδή c c e c e i/ i (α Άρα ( xt, c ( xe + c e ( xe, δηλαδή (β ( xt E E i t i t πx i πx πx πx, si + si si icos 5 5π E PE + PE E + E E 4m Επιπλέον Ασκήσεις, Άσκηση ισοδύναµη της ΓΕΚδ Ηλεκτρόνιο βρίσκεται στις δύο πρώτες ενεργειακές του καταστάσεις σε δυναμικό απειρόβαθου πηγαδιού που εκτείνεται στην περιοχή [ /, + /] (α Προσδιορίστε πλήρως αυτή την κατάσταση αν δίνεται ότι έχει μηδενική μέση θέση και η μέση ορμή του είναι 8 /3 (β Να υπολογιστεί η μέση ενέργεια του συστήματος Υπόδειξη Το πρόβλημα είναι απολύτως ισοδύναμο με την άσκηση ΓΕΚδ καθώς η μέση θέση είναι πάλι στην μέση του πηγαδιού και η μέση ορμή είναι ίδια Απλώς τώρα έχουμε συμμετρικό πηγάδι δυναμικού και πρέπει να χρησιμοποιήσουμε τις ιδοσυναρτήσεις για το πηγάδι αυτό Για τον φοιτητή, πολύ καλή εξάσκηση είναι να κάνει όλες τις αριθμητικές πράξεις (ολοκληρώματα από την αρχή με τις κυματοσυναρτήσεις του συμμετρικού πηγαδιού και να επιβεβαιώσει τα αναμενόμενα αποτελέσματα Ηλεκτρόνιο βρίσκεται στις δύο πρώτες ενεργειακές του καταστάσεις σε δυναμικό απειρόβαθου πηγαδιού πάχους που Διερευνείστε κατά πόσο είναι δυνατό να βρούμε την μέση θέση και τη μέση ορμή, αν γνωρίζουμε τη μέση ενέργεια του συστήματος και την αβεβαιότητα ενέργειας Ηλεκτρόνιο βρίσκεται στις δύο πρώτες ενεργειακές του καταστάσεις σε δυναμικό απειρόβαθου πηγαδιού πάχους που Διερευνείστε κατά πόσο είναι δυνατό να προσδιορίσουμε πλήρως την καταστασή του, αν γνωρίζουμε (α τη μέση θέση του σε δύο χρονικές στιγμές και (β την μέση θέση και την μέση ορμή σε δυο διαφορετικές χρονικές στιγμές
9 Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςε(ΓΕΚε Ηλεκτρόνιο βρίσκεται στις δύο πρώτες ενεργειακές του καταστάσεις σε δυναμικό απειρόβαθου πηγαδιού εύρους (α Προσδιορίστε πλήρως αυτή την κατάσταση αν δίνεται ότι έχει μέση θέση στο μέσο του πηγαδιού και η μέση ενεργειά του είνα 5 h /6m (β Να υπολογιστεί η μέση ορμή του συστήματος Ακολουθούµε την ίδια µεθοδολογία µε την προηγούµενη άσκηση ΓΕΚδ Για την µέση θέση έχουµε βρει x ( t c x + c x + c c x cos(, 6 όπου x x και x 9π Έτσι καθώς x ( t / cos( ± π / Ακόµα έχουµε π π h 5h E c E+ c E c + c ( c + 4 c m m 8m 6m c + 4 c 5/, και καθώς c c +, βρίσκουµε ότι c c / E E i t i t i (α Άρα ( xt, c ( xe + c e ( xe, δηλαδή πx i πx πx πx ( xt, si ± si si icos ± (β Για την µέση ορµή χρησιµοποιούµε την σχέση p ( t c c p cos( +, 8 8 iπ / Όπου (βλέπε άσκηση ΓΕΚδ, p i e π / 3 3 ηλαδή 8 8 p ( t c c p cos( + cos( ± π / + π / ± 3 3 Παρατηρούµε ότι η µέση ενέργεια µπορεί να έχει δύο δυνατές τιµές σε συµφωνία µε τις δυο δυνατές τιµές των συντελεστών c /, c ± i/
10 Πρόβλημα ΓενικέςΈννοιεςΚβαντομηχανικήςστ(ΓΕΚστ Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από τρεις καταστάσεις με ενέργεια Ε, Ε και Ε3 και αντίστοιχες ιδιοσυναρτήσεις,,, να βρεθεί η έκφραση που δίνει την μέση τιμή οποιοδήποτε φυσικού 3 μεγέθους Πως εκτιμούμε την κυματοσυνάρτηση; Χρησιµοποιούµε την γενική έκφραση που βρήκαµε στο πρόβληµα ΓΕΚβ, για την εύρεση της µέσης τιµής οποιοδήποτε τελεστή, δηλαδή ( EEm i t ccme m, όπου m (( ˆ ( m m x x dx Στο παρόν πρόβληµα στο διπλό άθροισµα οι δείκτες παίρνουν τιµές,,3 και m,,3 Έτσι η µέση τιµή οποιουδήποτε τελεστή, δίνεται από την έκφραση iωt iωt iω3t ( t cce + cce + cce ω + c c e + c c e + c c e + iωt iωt i 3t 3 3 ω ω ω + c c e + c c e + c c e i 3t i 3t i 33t c + c + c iωt iωt iω3t iω3t iω3t iω3t + cce + cce + cce cce 3 3+ cce cce 3 3 c + c + c i iωt i i iωt i + c c e e e + c c e e e + 3 i3 iω3t i 3 c c i 3 e e 3 e 3 + iω3t i + c c3 e e 3 e i i3 iω3t i i i3 iω3t i + c c3 e e e 3 e + c c3 e e e 3 e c + c + c c c cos( ω t+ + + c c cos( ω t+ + + c c cos( ω t ω, (έτσι ω ω ω33 Ενώ χρησιµοποιήσαµε την Όπου ορίσαµε ( Ei Ej / ιδιότητα ( ji i i i 3 Ενώ τα c, c, c3 γράφονται ισοδύναµα c c e c, c c e, c3 c3 e (θυµάστε γιατί θέτουµε ; βλέπε πρόβληµα ΓΕΚγ Γενικά έχουµε τις εξής παρατηρήσεις (α Τα είναι πραγµατικοί αριθµοί καθώς ( ( ηλαδή η ii ji ii ii ποσότητα c + c + c3 33 είναι προφανώς ένας πραγµατικός αριθµός
11 3 3 (β Οι φάσεις,, εκτιµούνται από τα στοιχεία e, e και i i 3 3 e Αν τα στοιχεία αυτά είναι πραγµατικοί αριθµοί οι αντίστοιχες φάσεις προφανώς µηδενίζονται Αυτό συµβαίνει για παράδειγµα όταν έχω πραγµατικές ιδοσυναρτήσεις της ενέργειας (πχ απειρόβαθο πηγάδι, τετραγωνικό πηγάδι και αρµονικό ταλαντωτή για τους πραγµατικούς τελεστές, όπως την θέση και όλες τις δυνάµεις αυτής, για το τετράγωνο της ορµής και όλες της άρτιες δυνάµεις της ορµής Έτσι έχουµε την απλοποιηµένη µορφή ( t c + c + c c c cos( ω t+ + c c cos( ω t+ + c c cos( ω t Ενώ αν έχουµε την ορµή του σωµατιδίου ( ˆ ˆp, ± π /, γιατί p ( ˆ i p j dx i j i dx i id j, x όπου προφανώς το πρόσηµο στη φάση του στοιχείου i / (καθώς ± i e ± π p, εξαρτάται από το πρόσηµο του ολοκληρώµατος i j 3 i d Γενικά στο σύστηµα µε τρεις καταστάσεις έχουµε πέντε αγνώστους c, c, c3,, 3, άρα χρειαζόµαστε πέντε σχέσεις µε αυτούς τους αγνώστους Φυσικά ισχύει πάντα ο νορµαλισµός, δηλαδή c c + Άρα χρειαζόµαστε τέσσερις σχέσεις Μπορούµε να έχουµε σχέσεις µε την µέση θέση, µε την αβεβαιότητα της θέσης µε την µέση ορµή και µε την αβεβαιότητα της ορµής Μπορούµε να έχουµε κάποια από τα παραπάνω και σχέσεις από την µέση ενέργεια και την αβεβαιότητα της ενέργειας Όµως πρέπει να παρατηρήσουµε ότι οι σχέσεις που έχουν την ενέργεια και την αβεβαιότητα της ενέργειας δεν έχουν καθόλου πληροφορίες για την φάση του συστήµατος (το σύστηµα είναι κλειστό και η ενέργεια διατηρείται, δηλαδή δεν έχει καµία χρονοεξάρτηση
Αναπαράσταση τελεστών µε πίνακα
Μάθηµα 7 ο, 8 Νοεµβρίου 008 (9:00-:00) Άσκηση Bonus[+05 στον τελικό βαθμό] Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από τρεις καταστάσεις με ενέργεια Ε, Ε και Ε3 και αντίστοιχες ιδιοσυναρτήσεις
Διαβάστε περισσότεραΜάθηµα 13 ο, 30 Οκτωβρίου 2008 (9:00-11:00).
Μάθηµα ο 0 Οκτωβρίου 008 (9:00-:00) ΑΣΚΗΣΕΙΣ ΣΧΕΤΙΚΕΣ ΜΕ ΘΕΜΕΛΙΩ ΕΙΣ ΑΡΧΕΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Άσκηση 9 Έστω ένα κβαντικό σύστηµα το οποίο περιγράφεται από τρεις ενεργειακές καταστάσεις (ιδιοτιµές ενέργειας
Διαβάστε περισσότερα( ) * Λύση (α) Καθώς η Χαµιλτονιανή είναι ερµιτιανός τελεστής έχουµε ότι = = = = 0. (β) Απαιτούµε
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Γενάρη ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης 3 ώρες ΘΕΜΑ [555555553] Θεωρούµε κβαντικό σύστηµα που περιγράφεται από την Χαµιλτονιανή H 3ε µ iε µε ιδιοσυναρτήσεις κάποιου
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 30 Αυγούστου 2010 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 2,5 ώρες.
ΘΕΜΑ [5575] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 3 Αυγούστου ( ιδάσκων: ΑΦ Τερζής) ιάρκεια εξέτασης,5 ώρες (α) Να αποδειχθεί ότι για οποιοδήποτε µη εξαρτώµενο από τον χρόνο τελεστή Α, ισχύει d A / dt = A,
Διαβάστε περισσότεραΑρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού, το οποίο εκτείνεται από 0 έως L.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Να µελετηθεί το απειρόβαθο κβαντικό πηγάδι µε θετικές ενεργειακές καταστάσεις ( E > ). Αρχίζουµε µε την µη συµµετρική µορφή του απειρόβαθου κβαντικού πηγαδιού δυναµικού
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ), και τις ενεργειακές στάθμες του, 2. E E E, όπου ˆ
ΠΑΡΑΔΕΙΓΜΑ II (ΑΠΕΙΡΙΣΜΟΣ ΤΟΥ ΔΥΝΑΜΙΚΟΥ ΣΕ ΠΕΡΙΟΧΗ/ΠΕΡΙΟΧΕΣ) Στο απειρόβαθο πηγάδι με τοιχώματα στα σημεία x, θα υπολογίσουμε τη διασπορά της ενέργειας,, για τη μικτή κατάσταση με 5 x x x 8 μέσα στο πηγάδι
Διαβάστε περισσότεραx L I I I II II II Ακόµα αφού η συνάρτηση στην θέση x=0 είναι συνεχής, έχουµε την παρακάτω συνθήκη. ηλαδή οι ιδιοσυναρτήσεις είναι
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδι3α(ΑΚΠ3α), x > Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( x) x Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για (α) c> και (β) c< Για την περίπτωση (α) να µελετηθεί
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 2004-2005 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Προπτυχιακό Πρόγραµµα Σπουδών Τµήµατος Φυσικής Πανεπιστήµιο Πατρών Χειµερινό εξάµηνο 4-5 ΣΥΜΠΛΗΡΩΜΑ ΑΣΚΗΣΕΩΝ Ανδρέας Φ. Τερζής Πάτρα Γενάρης 5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΕΛΕΣΤΩΝ ΜΕ ΜΗΤΡΕΣ [ΠΙΝΑΚΕΣ]
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω) Εξέταση: 17 Ιούνη 2013 ( ιδάσκων: Α.Φ. Τερζής) ΘΕΜΑ 1[ ]
ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Ι Τελική (επί πτυχίω Εξέταση: 17 Ιούνη 13 ( ιδάσκων: ΑΦ Τερζής ΘΕΜΑ 1[1515] Θεωρούµε κβαντικό σύστηµα που περιράφεται από την Χαµιλτονιανή, ε H 4ε 1 1 3i 1 1, µε 1, ιδιοσυναρτήσεις κάποιου
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 2012 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 3 ώρες.
ΘΕΜΑ 1[1] ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τελική Εξέταση: 31 Γενάρη 1 ( ιδάσκων: ΑΦ Τερζής ιάρκεια εξέτασης 3 ώρες Ηλεκτρόνιο βρίσκεται σε δυναµικό απειρόβαθου πηαδιού και περιράφεται από την 1 πx πx κυµατοσυνάρτηση
Διαβάστε περισσότεραΚβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5
Διαβάστε περισσότερα, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή
Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη
Διαβάστε περισσότεραΜάθηµα 19 ο, 25 Νοεµβρίου 2008 (9:00-11:00) & Συµπλήρωµα 7 εκεµβρίου 2010 (9:00-11:00).
Μάθηµα 9 ο, 5 Νοεµβρίου 008 (9:00-:00) & Συµπλήρωµα 7 εκεµβρίου 00 (9:00-:00). ΑΣΚΗΣΗ 9- Θεωρούµε φυσικά µεγέθη που περιγραφονται από τους τελεστές A, B, C και H (Χαµιλτονιανή). Γνωρίζουµε για τους τελεστές
Διαβάστε περισσότεραH = H 0 + V (0) n + Ψ (1) n + E (2) (3) >... Σε πρώτη προσέγγιση µπορούµε να δεχτούµε ότι. n και E n E n
3 Θεωρία διαταραχών 3. ιαταραχή µη εκφυλισµένων καταστάσεων 3.. Τοποθέτηση του προβλήµατος Θέλουµε να λύσουµε µε τη ϑεωρία των διαταραχών το πρόβληµα των ιδιοτιµών και ιδιοσυναρτήσεων ενός συστή- µατος
Διαβάστε περισσότεραΝα εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις.
Πρόβληµα ΑπειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα), < Θεωρούµε κβαντικό πηγάδι µε δυναµικό της µορφής V( ) = VΘ( ), Να εκτιµηθούν οι ιδιοκαταστάσεις του συστήµατος για τις δέσµιες καταστάσεις V Ε Ι ΙΙ Σχήµα ΑΚΠα1
Διαβάστε περισσότεραΚβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι. Πρόχειρο ιαγώνισµα: 11 Νοεµβρίου 2008 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης 1 ώρα.
Μάθηµα 6 ο, Νοεµβρίου 8 (9:-:). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Πρόχειρο ιαγώνισµα: Νοεµβρίου 8 ( ιδάσκων: Α.Φ. Τερζής) ιάρκεια εξέτασης ώρα. ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΕΤΟΣ ΣΠΟΥ ΩΝ: ΘΕΜΑ [4] Σωµάτιο εριγράφεται
Διαβάστε περισσότεραΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ. Θέμα 2. α) Σε ένα μονοδιάστατο πρόβλημα να δείξετε ότι ισχύει
ΘΕΜΑΤΑ ΚΒΑΝΤΙΚΗΣ ΙΙ Θέμα α) Δείξτε ότι οι διακριτές ιδιοτιμές της ενέργειας σε ένα μονοδιάστατο πρόβλημα δεν είναι εκφυλισμένες β) Με βάση το προηγούμενο ερώτημα να δείξετε ότι μπορούμε να διαλέξουμε τις
Διαβάστε περισσότεραˆ ˆ. (τελεστής καταστροφής) (τελεστής δημιουργίας) Το δυναμικό του συστήματός μας (αρμονικός ταλαντωτής μέσα σε ομογενές ηλεκτρικό πεδίο) είναι
ΜΟΝΟΔΙΑΣΤΑΤΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΕ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι (Τµήµα Α. Λαχανά) 1 Φεβρουαρίου 2010
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ι Τµήµα Α Λαχανά) Φεβρουαρίου ΘΕΜΑ : Θεωρήστε τις δύο περιπτώσεις όπου η κυµατική συνάρτηση ψx) που περιγράφει µονοδιάστατη κίνηση σωµατιδίου σε απειρόβαθο πηγάδι δυναµικού µε τα τοιχώµατα
Διαβάστε περισσότερακαι χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
Διαβάστε περισσότεραΚβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετηθεί μια εφαρμογή σχετικά με τις βασικές
Διαβάστε περισσότεραΠανεπιστήμιο Αθηνών Τμήμα Φυσικής. Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή
Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις I: Κίνηση σε τρεις διαστάσεις, στροφορμή 1. Κίνηση σε τρεις διαστάσεις Αποδεικνύεται (με τον ίδιο τρόπο όπως και
Διαβάστε περισσότεραii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+
Διαβάστε περισσότεραΚεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Ο Μονοδιάστατος Γραµµικός Αρµονικός Ταλαντωτής 1.1.1 Εύρεση των ιδιοτοµών και ιδιοσυναρτήσεων
Διαβάστε περισσότερα= + =. cos ( ) sin ( ) ˆ ˆ ˆ. Άσκηση 4.
Άσκηση 4 Θεωρείστε και πάλι το σύστημα της άσκησης Τη χρονική στιγμή το σύστημα βρίσκεται στην κατάσταση a (η οποία δεν είναι ιδιοκατάσταση της amilonian) Ποιά είναι η πιθανότητα, μετά από χρόνο, να βρεθεί
Διαβάστε περισσότερα( x) (( ) ( )) ( ) ( ) ψ = 0 (1)
ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΘΕΣΗΣ ΟΡΜΗΣ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ Στην προηγούµενη ανάρτηση, δείξαµε ότι η κατάσταση είναι κατάσταση ελάχιστης αβεβαιότητας των µη µετατιθέµενων ερµιτιανών τελεστών
Διαβάστε περισσότεραΛύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013
ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που
Διαβάστε περισσότεραΑρμονικός ταλαντωτής Ασκήσεις
Αρμονικός ταλαντωτής Ασκήσεις 4. Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ˆ i e, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ο τελεστής της ορμής, και η κλίμακα μήκους του
Διαβάστε περισσότερα= 2L. Οι ενεργειακές καταστάσεις του αρχικού πηγαδιού υπολογίζονται από την σχέση En
Πρόβηµα ΑειρόβαθοΚβαντικόΠηγάδια(ΑΚΠα) Θεωρούµε αειρόβαθο κβαντικό ηγάδι άχους, στο οοίο βρίσκεται εγκωβισµένο ηεκτρόνιο στην θεµειώδη κατάσταση Ε ιασιάζουµε το άχους του σωήνα ού αότοµανα βρεθεί η ιθανότητα
Διαβάστε περισσότεραΕξετάσεις 1ης Ιουλίου Για την ϐασική κατάσταση του ατόµου του Υδρογόνου της οποίας η κανονικοποιηµένη στην µονάδα
ΘΕΜΑ 1: Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ Εξετάσεις 1ης Ιουλίου 13 Τµήµα Α. Λαχανά) Α ) Για την πρώτη διεγερµένη κατάσταση του ατόµου του Υδρογόνου µε τροχιακή στροφορµή l = 1 να προσδιορισθουν οι αποστάσεις
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης
ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :
Διαβάστε περισσότερα1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Διαβάστε περισσότεραÂ. Θέλουμε να βρούμε τη μέση τιμή
ΜΕΣΗ ΤΙΜΗ ΕΝΟΣ ΕΡΜΙΤΙΑΝΟΥ ΤΕΛΕΣΤΗ Έστω ο ερμιτιανός τελεστής Â. Θέλουμε να βρούμε τη μέση τιμή Â μια χρονική στιγμή, που αυθαίρετα, αλλά χωρίς βλάβη της γενικότητας, θεωρούμε χρονική στιγμή μηδέν, όπου
Διαβάστε περισσότεραΚεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Κίνηση σε κεντρικά δυναµικά 1.1.1 Κλασική περιγραφή Η Χαµιλτωνιανή κλασικού συστήµατος που κινείται
Διαβάστε περισσότεραΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ
ΦΟΡΤΙΣΜΕΝΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ ΜΕΣΑ ΣΕ ΟΜΟΓΕΝΕΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ: ΤΕΛΕΣΤΕΣ ΔΗΜΙΟΥΡΓΙΑΣ ΚΑΙ ΚΑΤΑΣΤΡΟΦΗΣ, ΒΑΣΙΚΗ ΚΑΤΑΣΤΑΣΗ, ΕΛΑΧΙΣΤΗ ΕΝΕΡΓΕΙΑ ΣΥΖΗΤΗΣΗ Ξεκινώντας από τους τελεστές δημιουργίας και καταστροφής
Διαβάστε περισσότεραΤο θεώρηµα Hellmann- Feynman
Παράρτηµα Αποδείξεις Βασικών Θεωρηµάτων της Κβαντικής Μηχανικής Το θεώρηµα Hellma- Feyma Έστω ένα κβαντικό σύστηµα που περιγράφεται από τη Χαµιλτωνιανή Ĥ. Έστω ότι η Ĥ εξαρτάται από Hˆ Hˆ λ. Από την ίδια
Διαβάστε περισσότεραΕξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος
ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου
Διαβάστε περισσότεραKΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 KΒΑΝΤΟΜΗΧΑΝΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ Κυματική εξίσωση Schrödiger Η δυνατότητα ενός σωματιδίου να συμπεριφέρεται ταυτόχρονα και ως κύμα, δηλαδή να είναι εντοπισμένο
Διαβάστε περισσότεραΣυνεχές Φάσµα - Συνάρτηση δέλτα (Dirac)
Συνεχές ϕάσµα Συνεχές Φάσµα - Συνάρτηση δέλτα (Dirac) Στην κβαντική µηχανική τα ϕυσικά µεγέθη παρίστανται µε αυτοσυζυγείς τελεστές. Για έναν αυτοσυζυγή τελεστή ˆΩ = ˆΩ είναι γνωστό ότι οι ιδιοτιµές του
Διαβάστε περισσότεραΚβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Διαβάστε περισσότερα. Να βρεθεί η Ψ(x,t).
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η
Διαβάστε περισσότεραΠανεπιστήµιο Αθηνών. προς το χρόνο και χρησιµοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυµατοσυνάρτησης.
Πανεπιστήµιο Αθηνών Τµήµα Φυσικής Κβαντοµηχανική Ι Α Καρανίκας και Π Σφήκας Άσκηση 1 Η Hamiltonian ενός συστήµατος έχει τη γενική µορφή Δείξτε ότι Υπόδειξη: Ξεκινείστε από τον ορισµό της αναµενόµενης τιµής,
Διαβάστε περισσότεραΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ. =. Οι πρώτες µερικές u x y
ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΙΑΝΟΥΑΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΘΕΜΑ α) Καταρχήν θα µελετήσουµε την συνάρτηση f Η f γράφεται f ( ) = ( x + )( x ) ( x ) ή ακόµα f ( ) = u( x,
Διαβάστε περισσότεραΚεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville
Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 0 ΘΕΜΑΤΑ Α Θέµα ο. Να βρεθεί (α) η γενική λύση yy() της διαφορικής εξίσωσης y' y + καθώς και (β) η µερική λύση που διέρχεται από το σηµείο y(/). (γ) Από ποια σηµεία του επιπέδου
Διαβάστε περισσότερα7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας
7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων
Διαβάστε περισσότεραΚβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
Διαβάστε περισσότεραψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ. Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής
ΜΙΓΑΔΙΚΟ ΔΥΝΑΜΙΚΟ ΓΕΝΙΚΑ Έστω σωμάτιο, στις τρεις διαστάσεις, που βρίσκεται υπό την επίδραση μιγαδικού δυναμικού της μορφής Re Im V r V r i V r, όπου οι συναρτήσεις Re,Im V r V r είναι πραγματικές συναρτήσεις
Διαβάστε περισσότεραΔομή Διάλεξης. Εύρεση ακτινικού μέρους εξίσωσης Schrödinger. Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους. Εφαρμογή σε άτομο υδρογόνου
Κεντρικά Δυναμικά Δομή Διάλεξης Εύρεση ακτινικού μέρους εξίσωσης Schrödinger Εφαρμογή σε σφαιρικό πηγάδι δυναμικού απείρου βάθους Εφαρμογή σε άτομο υδρογόνου Ακτινική Συνιστώσα Ορμής Έστω Χαμιλτονιανή
Διαβάστε περισσότεραΜηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο
Διαβάστε περισσότεραx(t) 2 = e 2 t = e 2t, t > 0
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση
Διαβάστε περισσότεραΚεφάλαιο 1. Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς
Κεφάλαιο 1 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 2 Κβαντική Μηχανική ΙΙ - Περιλήψεις, Α. Λαχανάς 1.1 Στροφορµή στην Κβαντική Μηχανική 1.1.1 Τροχιακή Στροφορµή Η Τροχιακή Στροφορµή στην Κβαντική
Διαβάστε περισσότερα( x) Half Oscillator. Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού
Half Oscillator Σωμάτιο βρίσκεται υπό την επίδραση του δυναμικού ì, x ï V x í ïî mw x, x > Το σύστημα αυτό αναφέρεται ως «Half Oscillator». Στα Ελληνικά, θα χρησιμοποιήσουμε τον όρο «μισός αρμονικός ταλαντωτής»,
Διαβάστε περισσότεραΚανονικ ες ταλαντ ωσεις
Κανονικες ταλαντωσεις Ειδαµε ηδη οτι φυσικα συστηµατα πλησιον ενος σηµειου ευαταθους ισορροπιας συ- µπεριφερονται οπως σωµατιδια που αλληλεπιδρουν µε γραµµικες δυναµεις επαναφορας οπως θα συνεαινε σε σωµατιδια
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΟΛΥΩΝΥΜΙΚΕΣ - Α ΠΡΟΣΗΜΟ ΠΟΛΥΩΝΥΜΟΥ Μέχρι τώρα ξέρουµε να βρίσκουµε το πρόσηµο ενός πολυωνύµου βαθµού ή δεύτερου βαθµού Για να βρούµε το πρόσηµο ενός πολυωνύµου f πρώτου f βαθµού µεγαλύτερου
Διαβάστε περισσότερα(1) (3) x a. Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού ταλαντωτή µε κλίµακα µήκους a. â a, θα είναι,
Είναι i x 4 ( x ) ψ( x; ) e e () π Έστω () Τότε η () γράφεται ψ ( ; ) i x 4 ( x ) x e e (3) π είναι µια συνοχική κατάσταση µάλιστα µια Από την (3) βλέπουµε ότι η ( ) τυχαία συνοχική κατάσταση ενός αρµονικού
Διαβάστε περισσότεραΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί
Διαβάστε περισσότεραΔομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
Διαβάστε περισσότερα!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα
Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί
Διαβάστε περισσότερα21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση
Διαβάστε περισσότεραˆ pˆ. παραγωγίστε ως προς το χρόνο και χρησιμοποιείστε την εξίσωση Schrodinger για να βρείτε τη χρονική παράγωγο της κυματοσυνάρτησης. Θα βρείτε.
Άσκηση. Η Hamiltoia ενός συστήματος έχει τη γενική μορφή ˆ pˆ H V ( xˆ ) m Δείξτε ότι d V ( xˆ ) pˆ F( xˆ) t dt x def. t Υπόδειξη: Ξεκινείστε από τον ορισμό της αναμενόμενης τιμής pˆ dx ( x, t) pˆ( x,
Διαβάστε περισσότεραETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
Διαβάστε περισσότεραΖητείται να µελετηθεί το εν λόγω σύστηµα µε είσοδο βηµατική συνάρτηση δηλαδή () =(). (3)
Παράδειγµα 1: Έστω ένα σύστηµα που περιγράφεται από τη διαφορική εξίσωση () +2 () 29 () +42()=() (1) µε µηδενικές αρχικές συνθήκες. (δηλαδή ()(0) = () (0)=()(0)=0) (2) Ζητείται να µελετηθεί το εν λόγω
Διαβάστε περισσότεραΣηµειώσεις. ιαφορικές Εξισώσεις- Μετασχηµατισµός Laplace- Σειρές Fourier. Nικόλαος Aτρέας
Σηµειώσεις ιαφορικές Εξισώσεις- Μετασχηµατισµός Lplce- Σειρές Fourier Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 4 Περιεχόµενα Κεφάλαιο Επισκόπηση γνωστών εννοιών Σειρές πραγµατικών αριθµών Σειρές συναρτήσεων 3 Γενικευµένα
Διαβάστε περισσότεραΑκρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΣυνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.
Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-
Διαβάστε περισσότεραΟι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.
Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική
Διαβάστε περισσότεραΚ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές
Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a
Διαβάστε περισσότεραΘεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις
Θεωρία Διαταραχών ΙΙ: Εκφυλισμένες Καταστάσεις Δομή Διάλεξης Εκφυλισμένη Θεωρία Διαταραχών: Γενική Μέθοδος για την αντιμετώπιση των απειρισμών λόγω εκφυλισμού Εφαρμογή σε διεγερμένη κατάσταση υδρογόνου
Διαβάστε περισσότεραεξαρτάται από το θ και για αυτό γράφουµε την σ.π.π. στην εξής µορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.
Άσκηση : Έστω Χ,,Χ τυχαίο δείγµα µεγέους από την κατανοµή µε σππ 3 p (,, >, > 0 α είξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m είναι επαρκής για την παράµετρο και πλήρης κ β Βρείτε ΑΕΕ του α Το στήριγµα
Διαβάστε περισσότεραΚβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης
Διαβάστε περισσότερα2( ) ( ) ψ είναι οι ιδιοκαταστάσεις του τελεστή. ψ x, θα πάρουµε
ΟΙ Ι ΙΟΚΑΤΑΣΤΑΣΕΙΣ ΤΟΥ ΤΕΛΕΣΤΗ ΚΑΤΑΣΤΡΟΦΗΣ ΩΣ ΚΑΤΑΣΤΑΣΕΙΣ ΕΛΑΧΙΣΤΗΣ ΑΒΕΒΑΙΟΤΗΤΑΣ ΣΥΝΟΧΙΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ (COHERENT STATES) ΤΟΥ ΑΡΜΟΝΙΚΟΥ ΤΑΛΑΝΤΩΤΗ Στην προηγούµενη ανάρτηση, δείξαµε ότι στην αναπαράσταση
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ
ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ η Ερώτηση Γνωρίζουµε πως η κυµατοσυνάρτηση είναι η λύσης της κυµατικής εξίσωσης, που περιγράφει το µέγεθος της ιαταραχής, ( rt, ) r. Ψ= σε κάθε χρονική στιγµή, t, και σε κάθε θέση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότερα(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0
Τρόποι Κατασκευής Εάν οι ιδιοσυναρτήσεις του διαφορικού τελεστή L αποτελούν ένα ορθοκανονικό L ( ) ( ) (7) και πλήρες σύστημα συναρτήσεων ( ) m( ), m (8) και εάν τότε η εξίσωση Gree ( ) ( ) ( ) (9) z ()
Διαβάστε περισσότεραKεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων
4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές
Διαβάστε περισσότεραΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,
ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση
Διαβάστε περισσότεραΣηµειώσεις. Eφαρµοσµένα Μαθηµατικά Ι. Nικόλαος Aτρέας
Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Ι ικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ 207 Περιεχόµενα Κεφάλαιο. Επισκόπηση γνωστών εννοιών. -8. Σειρές πραγµατικών αριθµών..2 Σειρές συναρτήσεων..3 Γενικευµένα ολοκληρώµατα. Κεφάλαιο
Διαβάστε περισσότεραΗ Αναπαράσταση της Θέσης (Position Representation)
Η Αναπαράσταση της Θέσης (Position Representation) Δομή Διάλεξης Το παρατηρήσιμο μέγεθος της θεσης και τα αντίστοιχα πλάτη πιθανότητας (συνεχές φάσμα ιδιοτιμών και ιδιοκαταστάσεων) Οι τελεστές της θέσης
Διαβάστε περισσότεραΣυνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Διαβάστε περισσότεραETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ
1 4. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ ΘΕΩΡΙΑ 1. Η γενική µορφή του τριωνύµου µε µεταβλητή x R i) α x + βx + γ, α 0 ii) β α x + α 4α, α 0. Ειδικές µορφές του τριωνύµου Όταν > 0 τότε α x + βx + γ α(x x 1 )(x x ), όπου
Διαβάστε περισσότεραΜηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).
Διαβάστε περισσότεραΕφαρμογές της κβαντομηχανικής. Εφαρμογές της κβαντομηχανικής
Εφαρμογές της κβαντομηχανικής ΠΙΑΣ Ελεύθερο σωματίδιο σε μια διάσταση Σωματίδιο κινούμενο ελεύθερα στον άξονα σε σταθερό δυναμικό ανεξάρτητο του : V ˆ( () V ξίσωση Schrödinger: d d H ˆ H ˆ ˆ() () () d
Διαβάστε περισσότεραΤο θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y
5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 5 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 6/5/08
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 7-8 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 5 ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης 6/5/8 5//8 Άσκηση Α) Από τον νόµο µετατόπισης του Wien (σχέση (.6) σελ. 5 του βιβλίου των Serwy-Moses-Moyer) έχουµε
Διαβάστε περισσότεραΠροσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών
Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα
Διαβάστε περισσότεραΜάθηµα 18 ο, 19 Νοεµβρίου 2008 (9:00-10:00).
Μάθηµα 8 ο, 9 Νοµβρίου 008 (9:00-0:00) Άσκηση 4 Θωρούµ κβαντικό σύστηµα ύο πιπέων, ηλαή έχουµ ύο ιιοκαταστάσις της νέργιας, Ĥ Ε και Ĥ Ε, τις οποίς ν γνωρίζουµ Ενώ για τον τλστή Α, γνωρίζουµ τις ιιοκαταστάσις
Διαβάστε περισσότεραΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ
ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ Έστω â μια παρατηρήσιμη (διανυσματικός τελεστής) με συνεχές φάσμα ιδιοτιμών. Επίσης, έστω ότι t είναι η κατάσταση του συστήματός μας την τυχαία χρονική στιγμή
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότερα2.1 (i) f(x)=x -3x+2 Η f(x) ορίζεται x R
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. (i) f()= -3+ Η f() ορίζεται R Έχει Π.Ο ολόκληρο το R Για το Π.Τ της f() έχουµε : ος τρόπος 3 9 3 = -3+= - - += - - () Το Π.Τ. της f() θα είναι οι τιµές που παίρνει το R. Από
Διαβάστε περισσότερα